Defining the critical period for neocortical neurogenesis after pediatric brain injury.

نویسندگان

  • Matthew V Covey
  • Yuhui Jiang
  • Vamsi V Alli
  • Zhengang Yang
  • Steven W Levison
چکیده

Pediatric traumatic brain injury (TBI) is a significant and underappreciated societal problem. Whereas many TBI studies have evaluated the mechanisms of cell death after TBI, fewer studies have evaluated the extent to which regeneration is occurring. Here we used a cryoinjury model to damage the somatosensory cortex of rats at postnatal day 6 (P6), P10 and P21. We evaluated the production of new neocortical neurons using a combination of 5-bromo-2-deoxyuridine (BrdU) labeling combined with staining for doublecortin (DCX). BrdU+/DCX+ bipolar cells were observed adjacent to the neocortical lesion, with their processes oriented perpendicular to the pial surface. As the animals aged, both the overall proliferative response as well as the production of neocortical neuroblasts diminished, with P6 animals responding most robustly, P10 animals less strongly, and P21 animals showing a very modest proliferative response and virtually no evidence of neocortical neurogenesis. When BrdU was administered at increasingly delayed intervals after the injury at P6, there was a clear difference in the number of new neuroblasts produced as a function of age, with the greatest number of new neocortical neurons produced between 4 and 7 days after the injury. These studies demonstrate that the immature brain has the capacity to produce neocortical neurons after traumatic injury, but this capacity diminishes as the brain continues to develop. Furthermore, in contrast to moderate hypoxic/ischemic brain damage in the P6 rat, where neurogenesis persists for at least 2 months, the response to cryoinjury is quite different as the neurogenic response diminishes over time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-visible penetrating brain trauma: a case report

Objective: One of the most frequent causes of death and acquired disability in the pediatric population is the Traumatic Brain Injury (TBI). TBI is secondary to falls, road traffic and vehicle collisions, child abuse and assaults. Penetrating brain injury is a severe form of traumatic brain injury. Blunt head injury is more frequent than TBI in children, but the second one carries a poor progno...

متن کامل

Replacing neocortical neurons after stroke.

Fifteen years ago, a research report claiming that brain injury stimulates production of new neurons in postnatal mammalian forebrain would have been met with widespread skepticism. Since then, considerable experimental evidence has emerged indicating that neural stem cells and neurogenesis persist in specific regions of the neonatal and adult mammalian forebrain (reviewed in Ming and Song). Ma...

متن کامل

The Effect of TGF-alpha on Neurogenesis in Subventricular Zone of Rat Brain after Ischemia-Reperfusion

Introduction: Stroke is the third important reason of death in adults and an important cause of adult disability. Previous studies suggest that TGF-alpha can induce neurogenesis after stroke. Here in, we studied neurogenesis effects of the TGF-alpha on subventricular zone following ischemia-reperfusion. Male wistar rats (250-300 g) were divided into ischemia and treatment groups. After inductio...

متن کامل

The role of cell death during neocortical neurogenesis and synaptogenesis: implications from a computational model for the rat and mouse.

We are quantitatively evaluating the acquisition of neocortical neurons through key stages of development including neurogenesis, migration, and synaptogenesis. Here we expand upon a previous computational model describing neocortical neurogenesis in the rat and mouse [Dev. Neurosci. 24 (2002) 467], to include the period of synaptogenesis (P0-P14) when programmed cell death (PCD) is known to pl...

متن کامل

Birthdates of neurons in induced microgyria.

Freezing injury to the cortical plate of the newborn rat results in the formation of a focal region of cerebrocortical microdysgenesis resembling, in many ways, human 4-layered microgyria. Previous research has shown that neurons born during embryonic day (E) 20 migrate through the initial damage and take their place in the cell-dense layer of the microgyric lesion. The current study was conduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental neuroscience

دوره 32 5-6  شماره 

صفحات  -

تاریخ انتشار 2010